Design, Analysis and Development of Modular Multilevel Converter (MMC) Sub-Module On-Board Control, Sensing and Interface Circuit

Abstract

Introduction

Modular Multilevel Converters (MMCs) have emerged as the preferred topology for medium- and high-voltage applications such as HVDC transmission, STATCOMs, renewable integration, and high-power drives. The performance, reliability, and protection capability of an MMC heavily depend on the design of its sub-modules, particularly the on-board control, sensing and interface electronics. The proposed project aims to design, analyze, and develop a compact and robust sub-module electronic circuit incorporating voltage and current sensing with digital isolation, thermal monitoring, gate-drive interface, and CPLD-based local logic control and protection.

2. Objectives

The major objectives of this project are:

- 1. To design an integrated sensing and protection circuit for each MMC sub-module.
- 2. To develop isolated voltage and current sensing circuits suitable for high-voltage floating operation.
- 3. To incorporate thermal sensing and module-level protection mechanisms.
- 4. To design and implement on-board sub-module logic using a low-power CPLD for gate drive coordination, fault detection, and communication.
- 5. To prototype, test, and validate the developed circuits under representative operating conditions.

A low-power CPLD will be designed to perform real-time sub-module logic including:

- Gate signal sequencing for the half-bridge switches
- On-board capacitor voltage balancing support
- Over-voltage, over-current, and over-temperature protection
- Fault latching and communication to the central controller
- High-speed interfacing with isolated gate drivers

The CPLD implementation ensures deterministic timing, reduced latency, and high reliability. Conclusion:

• Development of CPLD based control circuit for MMC Sub module operation.

Academic Project Requirements:

- 1) Required No. of student(s) for academic project: 2
- 2) Name of course with branch/discipline: B.E./B.Tech. Electrical
- 3) Academic Project duration:
- (a) Total academic project duration: 24 Weeks
- (b) Student's presence at IPR for academic project work: 3 Full working Days per week

Email to: saurabh@ipr.res.in[Guide's e-mail address] and project_ee@ipr.res.in [Academic Project Coordinator's e-mail address]

Phone Number: 079 -2174,4404 [Guide's phone number]